skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Chumeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Immunofocusing on conserved, subdominant epitopes is critical for vaccines against highly diverse viruses such as HIV-1, influenza, and SARS-CoV-2. The eight-residue N-terminus of the HIV-1 fusion peptide (FP) is one such example of a promising yet small target. We developed new FP immunogens using three alphavirus-like particles (VLPs) and introduced additional glycans to mask shared carrier-specific epitopes. In two independent guinea pig studies, sequential immunization with heterologous carriers enhanced FP-directed antibody titers, which were further improved with glycan engineering. Separately, using diverse FP variants sharing the same N-terminal six amino acids increased neutralizing antibody titers. When combined, these two strategies led to higher FP-directed titers and, after Env trimer boosting, induced FP-directed neutralizing antibodies against multi-clade wild-type HIV-1 in nearly all animals. These findings established the importance of minimizing recurrent off-target epitopes across immunizations and support the engineered VLPs as a promising platform for peptide immunization. HighlightsNovel HIV-1 fusion peptide immunogens using glycan-engineered alphavirus-like particlesImproved FP-directed response by minimizing recurrent carrier-specific epitopes across immunizationsImproved neutralizing response by sequential immunization with diverse FP variantsFP-directed antibodies neutralizing multi-clade wildtype viruses in nearly all animals 
    more » « less
    Free, publicly-accessible full text available May 5, 2026